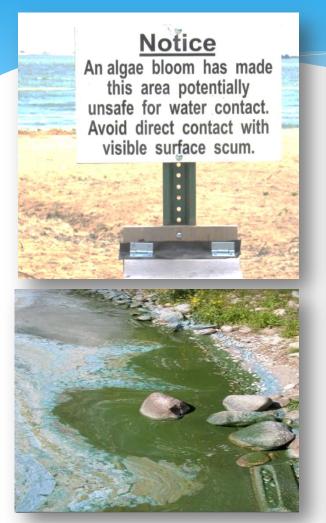
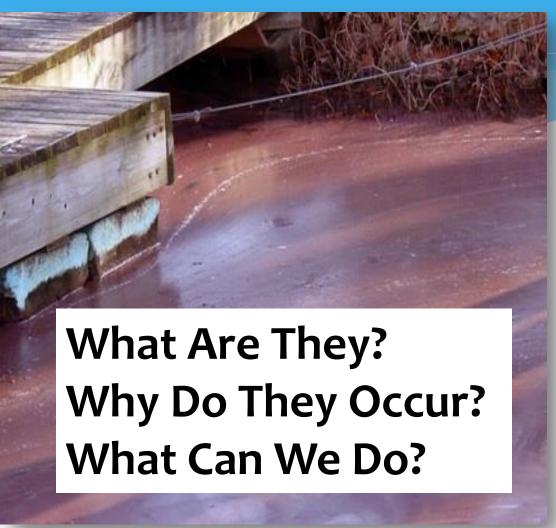
Harmful Algae Blooms Why Do They Occur? How Can We Control Them?

Stephen J. Souza, Ph.D. Clean Waters Consulting, LLC SJSouza.CWC@gmail.com

Thanks To




Science & Nature Working Together!

Harmful Algae Blooms (HABs)

What's A HAB

Harmful Algae Blooms

- Nothing new...public / policy makers catching up to science.
- Intense cyanobacteria (bluegreen algae) blooms that generate very high concentrations of cyanotoxins.
- HABs impact the recreational use, ecology and water quality of lakes.
- High concentrations of cyanotoxins can impact the health of humans, pets, and livestock.

Tell me More About Cyanobacteria!

- They are prokaryotes... not eukaryotes (such as algae)... lack membrane encased organelles or mitochondria.
- However, they can photosynthesize.
- Thus share properties of both bacteria and algae.

What Makes Them So Unique?

- Many can assimilate atmospheric nitrogen... providing an unlimited source of N.
- Biologically adept at assimilating organic phosphorus, better than "good algae".
- Many can regulate position in water column.
- Many do well in low light conditions.
- Selectively rejected as food source by filter feeders and zooplankton.
- Some produce cyanotoxins.

Cyanotoxins

- Not produced to directly harm humans, pets and livestock.
- Cyanotoxins create a competitive advantage over "good algae".
- Some toxins "ooze" out of healthy cyanobacteria.
- But large amounts are released when cyanobacteria die.
- Relatively stable and slow to biodegrade.

The Paradox of Copper Sulfate Treatments

- Copper based algaecide treatments can be part of a HAB management strategy.
- But should not be the "go to" solution.
- Reliance on CuSO4 only creates an environment that much more conducive for more cyanobacteria growth...blooms returns often that much more intense.
- May temporarily relieve bloom conditions but can actually exacerbate problem.
- Largescale algaecide treatments lead to the rapid release of large amounts of cyanotoxins and organic phosphorus.
- Treatments also kill off "good algae" and zooplankton, rapid die off can depress oxygen levels leading to a fish kill.

The "Bad Guys"

- Microcystis
- Planktothrix
- Anabaena
- Aphanizomenon
- Anacapsa
- Lyngbya
- Gloeotrichia

Tell Me More About Cyanotoxins!

- Different types of cyanotoxins
 - Microcystin-LR
 - Cylindrospermopsin
 - Anatoxin -a
 - Saxitoxins
 - Anatoxin-a(S)

These of greatest interest and concern in freshwater ecosystems

Tell Me More About Cyanotoxins!

- Exposure ... drinking or contact recreational activities.
- Even at low concentrations, recreational contact may cause skin rashes (even for dogs and livestock), ear/throat infections and gastrointestinal distress.
- Increased attention being given to possible links between cyanotoxins and neurodegenerative diseases (Parkinson's, ALS, and Alzheimer's).

Why Do HABs Occur?

This Is Nothing New

- Cyanobacteria blooms are not a new phenomena, been occurring for millennia.
- But public becoming better educated and more aware of the WQ problems and health risks they pose.

The Common Denominators

- Excessive nutrient loading (especially Phosphorus)...runoff the major source.
- High water column concentrations of Total Phosphorus.
- Warm water temperatures.
- Plenty of sunlight for photosynthesis.

Lake Eutrophication

- Increased nutrient loading leads to increase in productivity and production of organic carbon.
- For lakes, this means more algae...including cyanobacteria.

Phosphorus – The Primary Driver of Eutrophication

- For the lakes, ponds and reservoirs of NJ, phosphorus is typically the "limiting nutrient" or "nutrient of concern".
- Add more phosphorus...get more productivity.
- Only need a little phosphorus to stimulate "too much" productivity...o.o4 mg/L
- 1lb phosphorus can create 1,000 lbs of algae!

Eutrophic Lakes Are Not Dead Lakes

Rather They
Are Lakes That
Needs to Go
On a
Phosphorus
Diet

The bad news...most of NJ's lakes are eutrophic and most are susceptible to a HAB

Eutrophic Lake - "A"

Not

Too

Bad

Eutrophic Lake - "B"

Not

Too

Good

How To Control Eutrophication and Limit HABs

Successful Lake
Management
Requires a
Technically Sound
Management Plan

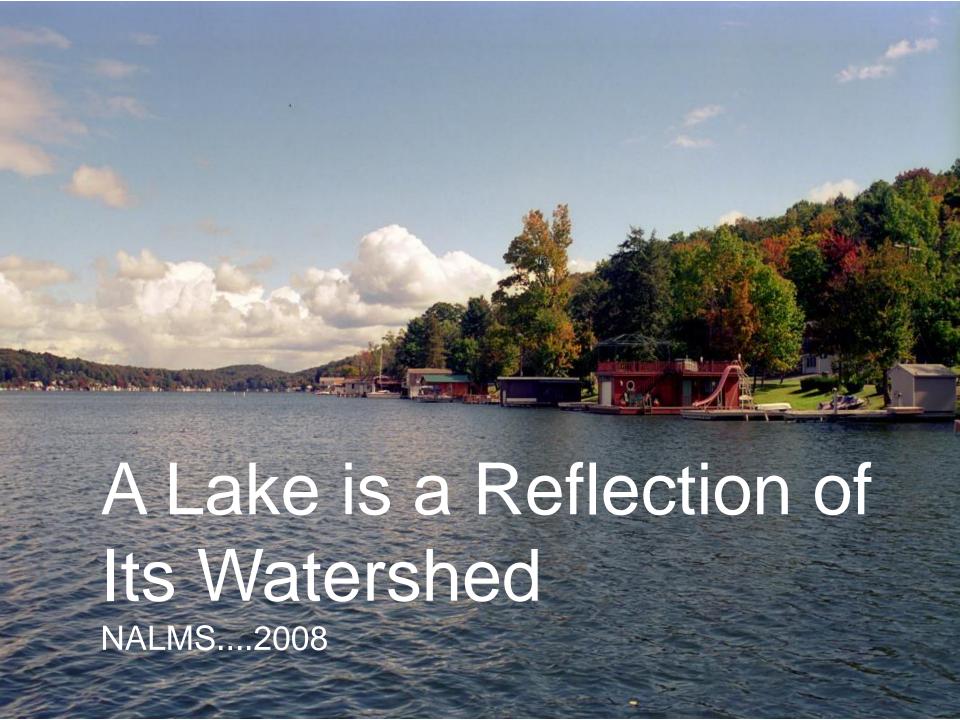
Controlling Eutrophication and HABs

- Plan needs to identify <u>causes</u> of lake's eutrophication and HAB development.
- Plan needs to accurately assess lake's biological, chemical, hydrologic and physical interactions...all of which affect HAB development.
- Priority element is accurate identification and quantification of sources and timing of phosphorus loading.

If Phosphorus Is The Problem...Where Is It Coming From?

Phosphorus Sources

Phosphorus inputs vary seasonally and may originate from both internal and external sources.


- In-lake (internal)
 - Sediment release and recycling
 - Decomposition of organic material (algae, weeds, fish, etc.)
- External
 - Stormwater runoff (direct and indirect)
 - Septic systems and wastewater
 - Rainfall
 - Waterfowl

Restoration and Management Plan

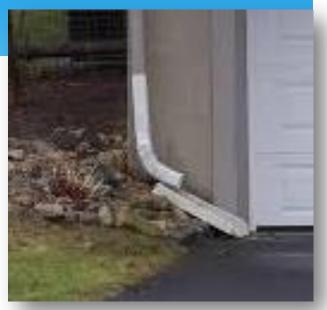
A comprehensive, data backed plan consists of:

- Reactive actions
- Proactive / preventative actions
- In-lake management measures
- Watershed management measures

For the majority (80%) of lakes, watershed management is the foundation of the plan because it addresses the root cause of eutrophication and its problems

For Most Lakes Stormwater Is The Driver

- Directly affects the amount and timing of phosphorus loading.
- Indirectly affects lake's thermal properties, water column stability and mixing dynamics.
- Source of legacy loads tied to internal loading.
- Indirectly affects septic loading due to effect on groundwater elevation.
- As such, successful lake management and HAB prevention/control <u>must</u> involve systematic stormwater management and emphasize phosphorus load reduction.


Stormwater Management

Residential/Lake Community Scale

- Impervious surface runoff
- Lawn fertilizer
- Pet Waste

Regional Scale

- Regional development
- Agriculture
- Active construction sites
- Eroding stream bed and bank

In Summary

In Summary....HABs

- HABs are not a new thing.
- Frequency and severity of HABs is increasing.
- At very high densities, cyanobacteria negatively affect health of humans, pets and livestock.
- NJ's lakes are phosphorus rich and therefore susceptible to HABs...Key to preventing HABs is phosphorus management.
- Copper sulfate is not the primary solution and can actually worsen conditions and intensify HABs and their impacts.

Our Goal

For More Information on HABs

NJDEP -

https://www.state.nj.us/dep/wms/HABS.html https://www.state.nj.us/dep/wms/bfbm/download/NJHABRe sponseStrategy.pdf

NALMS.org

https://www.nalms.org/home/nalms-inland-hab-program/

NYSDEC –

https://www.dec.ny.gov/chemical/77118.html https://www.dec.ny.gov/docs/water_pdf/habsbrochure.pdf

For More Information on HABs

EPA and Others...

- https://www.epa.gov/nutrientpollution/harmful-algalblooms
- http://oceanservice.noaa.gov/hazards/hab/
- http://www.cdc.gov/nceh/hsb/hab/
- http://www2.epa.gov/nutrientpollution/harmful-algalblooms
- https://www.health.state.mn.us/diseases/hab/hab.pdf

Thank You....

Stephen J. Souza, Ph.D.
Clean Waters Consulting, LLC
SJSouza.CWC@gmail.com